
NASA-cR-z 9360_

oO

THE DEVELOPMENT OF A SCALABLE

PARALLEL 3-D CFD ALGORITHM

FOR TURBOMACHINERY

By

Edward Allen Luke

,,t" u_ N

I ,-, O,
,,,t" U c_

I,,,,,- o

(, .m

0 U >.. ,-
.,-/ aC u_
uJ C2_ W ,_
_, I Z.-

.,./ ¢,J
W u.s ,,_

oC ,'_. CL

0
-,0 u../ 0C _,,--.

! --O _E H ,.

_ CL .._ r_ 4a

r_

A Thesis

Submitted to the Faculty of

Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computational Engineering

in the College of Engineering

Mississippi State, Mississippi

July 1993

Copyright by

Edward .4_ Luke

1993

Name: Edward Allen Luke

Date of Degree: July 30, 1993

Institution: Mississippi State University

Major Field: Computational Engineering

Major Professor: Dr. Donna Reese

Title of Study: THE DEVELOPMENT OF A SCALABLE PARALLEL 3-D

CFD ALC_RITHM FOR TURBOMACHINERY

Pages in Study: 75

Candidate for Degree of Master of Science

Two algorithms capable of computing a transonic 3-D inviscid flow field

about rotating machines are considered for parallel implementation. During

the study of these algorithms, a significant new method of measuring the per-

formance of parallel algorithms is developed. The theory that supports this

new method creates an empirical definition of scalable parallel algorithms

that is used to produce quantifiable evidence that a scalable parallel applica-

tion has been developed. The implementation of the parallel application and

an automated domain decomposition tool is also discussed.

ACKNOWLEDGMENTS

First, I would like to give a big hoot and a holler to Dr. Tim Swafford for

his invaluable editing suggestions. And lets all give a big round of applause to

Dr. Donna Reese for her helpful suggestions and for listening to my regular

whining sessions during the course of this research work (Bravo! The crowd

goes wild!). I want to ring the cow bell for Dr. Mark Janus for putt_-lg up with

my constant pestering and for his assistance in explaining various features of

his turbomachinery application. I would also like to thank Tony Skjellum for

his tough questions that got me scratching my head for a while.

In addition, I would like to express my thanks to NASA Lewis Research

Center for providing financial support and access to the Intel Delta at Caltech,

and to Rich Blech and Russ Claus, technical monitors.

Most of all, I want to credit my parents for nurturing my creative and

inquisitive spirit.

E. ,4, Luke

Mississippi State University
June 1993

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..

TABLE OF CONTENTS ..

LIST OF FIGURES ...

LIST OF TABLES ..

fi

,ol

111

V

vi

CHAPTER III
ANALYSIS OF THE PARALLEL ALGORITHM 19

Amdahl's Law ... 20

A Definition of Parallel Algorithms 21

Scaled Speedup and Fixed-Time Size-Up 22

Scalability of the Parallel Approximate Factorization Algorithm 23

Analysis of the Modified Algorithm 32

Measuring Numerical Costs in the Modified Algorithm 34
On the Cost Effectiveness Metric 35

iii

CHAPTER I
INTRODUCTION .. 1

f

CHAPTER II
AN OVERVIEW OF THE NUMERICAL ALGORITHM 4

The Conservative Differential Form of the Euler Equations 4

Discretization ... 5

Linearization ... 7

Flux Vector Splitting ... 8

Approximate Factorization 11

Newton Iterations ... 12

The Form of the Resulting Linear System 14

The Parallel Approximate Factorization Algorithm 15

The Modified Algorithm .. 17

Implementation of the Modified Algorithm 18

CHAPTER IV

IMPLEMENTATION 40

Object-Oriented Fortran ... 41

Preparation of the Application 41

Development of the Parallel Application 42

The Automated Domain Decomposition Tool 46

CHAPTER V

RESULTS ... 52

Computing the Level of Convergence 52

The Solution Process ... 53

Solution Results from the Parallel Application 54

Convergence Results of the Parallel Application 56

CHAPTER VI

CONCLUSIONS ...

APPENDIX A

PARALLEL EMULATOR PROGRAM

APPENDIX B

EXAMPLE INPUT FILE FOR THE DOMAIN DECOMPOSITION

TOOL ..

REFERENCES ..

63

65

69

74

iv

LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3
Given a

Figure 2.4

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 4.1

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

A Form of the Linear System Implied by Equation (2.18) 14

A Form of the Linear System Implied by Equation (2.19) 15

The Form of the Linear System Implied by Equation (2.19)

Diagonal Plane Based Ordering of the Solution Vector 16

An Illustration of Decoupling Solution Vector Partitions 18

Degree of Parallelism for a 10xl0xl0 Problem Size 26

Size-Up Based on 10xl0xl0 Sequential Execution Time 27

Size-Up Based on 3x3x3 Sequential Execution Time 28

Size-Up After 65% Parallel Efficiency Scale-Up 29

Cost Effectiveness Curve for a 10xl0xl0 Problem Size 31

Optimal Cost Effectiveness Versus Problem Size 31

Cost Effectiveness and Efficiency as Processors Scale 33

Maximum Cost Effectiveness versus Problem Size 37

Maximum Cost Effectiveness as Processor Limits are Reached 38

A Schematic of a Ring Buffer Connection for One Patch 45

Density Residuals During the First Revolution 59

Energy Residuals During the First Revolution 59

Density Residuals at the Final Newton Iteration 60

Energy Residuals at the Final Newton Iteration 60

Pressure Coefficient Comparison at the Base of the Fore Blade 61

Pressure Coefficient Comparison at the Tip of the Fore Blade 61

Pressure Coefficient Comparison at the Base of the Aft Blade 62

Pressure Coefficient Comparison at the Tip of the Aft Blade . 62

V

LIST OF TABLES

2hble 4.1

Table 4.2

Table 5.1

Variables Accessible from the Global Variable Scope 47

Variables within the Scope of TERMINAL_ATTRIBUTES ... 49

Execution Time Results of the Parallel Application 56

vi

CHAPTER I

INTRODUCTION

Using multiple computational engines concurrently in order to increase

the performance of computing platforms is a strategy that has been in exis-

tence almost since the advent of computer systems. Computer architecture

has felt the impact of this strategy in the form ofpipelined and vector architec-

tures, interleaved memory systems, floating point accelerators, input and out-

put processors, and so on. Many of these "parallel" computers derived their

design principles from observations of existing applications. When a large

class of applications exhibit characteristics that could provide significant per-

formance enhancement by concurrent utilization of computational resources,

computer architectures were devised to take advantage of these characteris-

tics. Applications that did not exhibit these characteristics adapted to the new

computer architectures by modification of the implementation of algorithms

and by the development of new algorithms. Automation of some of the pro-

cesses involved in adapting an application to new computer architectures

helped to speed the acceptance of these platforms by a wider audience of ap-

plication developers.

The performance gains that pipelined and vector architectures can pro-

vide has begun to stabilize as the these technologies mature. In addition, per-

formance gains resulting from new technologies that create faster electronic

devices soon will be reaching physical barriers relating to device sizes and the

maximum theoretical speed that signals can propagate.

1

2

General parallel computer architectures such as multicomputer en-

sembles have been suggested as an approach to gain higher performance com-

putational platforms in light of the future limitations traditional computer ar-

chitectures will encounter. Since general parallel computer architectures are

designed based on the assumption that traditional architectures will soon

reach theoretical limits rather than exploiting charactex_tics of existing ap-

plications, it is not surprising to discover that general parallel computer archi-

tectures place a greater burden on application developers than traditional

computer architectures. Key to the success of general parallel computer archi-

tectures is the development of applications that can use the resources these

computer architectures provide.

This thesis advances the science of general parallel computing in two

important ways, 1) it introduces a new method for measuring and classifying

parallel algorithms, and 2) it contributes to the base of applications that can

utilize the resources general parallel architectures provide.

The method for measuring parallel algorithms that was developed in

this thesis arose from the study of two parallel algorithms that are presented

in Chapter II. One of these algorithms was developed to utilize vector archi-

tectures and the other was originally developed for purposes other than paral-

lel processing. In this thesis, the algorithm that was developed for vector ar-

chitectures is referred to as the parallel approximate factorization algorithm

and the other as the modified algorithm. Intuition and experiences suggested

that the modified algorithm would be superior in the context of massively par-

allel architectures but developing a solid argument for this case proved diffi-

cult. Attempts to use common metrics of parallel algorithm performance to

make this case provided ambiguous results. The experience gained from this

3

analysis led to a new perspective on parallel algorithm evaluation. This new

perspective, based on the cost effectiveness of parallel computations, resulted

in a new method for measuring parallel algorithms that provided unambigu-

ous results. These findings are presented in Chapter III.

Chapter IV presents a summary of the details involved in the imple-

mentation of the modified algorithm developed in Chapter II and analyzed in

Chapter IH.

Chapter V presents the results of numerical experiments needed to

complete the arguments presented in Chapter III, and finally Chapter VI dis-

cusses the implications of this research and suggests areas where future in-

vestigation is needed.

CHAPTER H

AN OVERVIEW OF THE NUMERICAL _RITHIVI

The first step in the process of developing an application for parallel

processors is the identification of the components of an application's structure

which impede or aid in accomplishing the goal of solving the problem on a

number of processors concurrently. For the specific task of parallelizing an

existing application, analysis of the application falls roughly into two catego-

ries: 1) the analysis of the general structural constraints presented by the

computational model; and 2) the analysis of the specific constraints presented

by the implementation of that computational model.

Before analysis of the computational model can begin, the computation-

al model must be presented. This chapter will present aspects the computa-

tional model developed by Janus[l] that are relevant to the parallel imple-

mentation. The reader interested in the complete derivation of the

computational model is referred to Janus's dissertation[l].

The Conservative Differential Form of the Euler Equations

The application of interest involves seeking a numerical solution to the

Euler equations, a subset of the Navier--Stokes equations given the simplify-

ing assumptions of a thermally nonconducting inviscid perfect gas with no

body forces. The Euler equations can be written in conservative form where

no dependent variables are present outside of the differential operators. In

the conservative form, errors produced by discretization operators will not

4

5

cause a violation of the conservation properties expressed in conservation law

equations. The conservative form of the Euler equations wri_.n for the Carte-

sian coordinate system can be expressed as

aq of(q) ag(q) ah(q)
=o. (2.1)

In equation (2.1), q represents the five dependent variables: mass, three

components of momentum, and energy, whereas f(q), g(q), and h(q) represent

the flax vectors in each of the coordinate directions x, y, and z respectively. It

should be pointed out that the actual equations solved in the present applica-

tion are the Euler equations cast in a curvilinear coordinate system. Although

this increases the complexity of the equations somewhat, it does not change

the data dependencies that exist between computational cells. Since the cur-

vilinear derivation would only serve to obscure the issues of consequence to

the parallel algorithm evaluation, the derivation of the numerical model will

be presented in the Cartesian coordinate system.

Discretization

Applying a first-order implicit temporal discretization with a finite vol-

ume spatial discretization to equation (2.1) yields

where

/Iqn 6j(q)n+1
ZI-'-_+ �Ix + 6yg(q)n+1 6zh(q)n+1

Ay + Az = 0, (2.2)

Aqn = qn+l _ q,,,

n+l

6xf(q)n+ t = f(q)x+_o,,z -- f(q)n+l , 6yg(q)n+ 1 = g(q)n+ l _ g(q)n+ lz, ,
x - -y,y ,z x,y + -_,z x,y - -y ,z

6zh(q)n+ 1 = h(q)nx+ l+,j, _ h(q)n+ 1
,y,z -y x,y,z - _ "

6

The choice of implicit time integration in the derivation of equation

(2.2) is the most significant with respect to parallelization of this algorithm

because this choice introduces multiple unknowns (represented by functions

evaluated at the n + 1 time level) into the discretized equation for a computa-

tional cell. Given the discretized equations for every cell, there are N equa-

tions and N unknowns that when linearized can be written as a linear system

of the form Ax = b. A is a matrix that contains the coefficients of the un-

knowns, x is a vector of the unknowns referred to as the solution vector, and b

is a vector containing a collection of known values. As an emphasis to the con-

nection between the discretized equations and the linear system that results,

the unknowns are grouped to the lefb-hand-side (LHS) of the equation and

the knowns are grouped to the right-hand-side (RHS).

Solving the linear system that results from implicit time integration is

difficult, even on sequential processors. In general, much effort is expended to

adjust the form of the LHS so that a kernel of efficient linear system solvers

such as tri-diagonal solvers or LU factorization solvers can be employed. Un-

fortunately, these schemes usually rely on backward substitution steps that

create data dependencies forcing sequential or near sequential execution.

Given these problems, the form of the LHS and the methods chosen to solve

the linear system that results will be a subject of the present investigation.

Higher order temporal discretizations of equation (2.2) can be derived

using a parameterized form developed by Beam and Warming [2]. The higher

order schemes, which require the storage of/Iq and residual terms from the

previous iteration, primarily affect the RHS and as such have little impact on

the form of the linear system. In fact, because a first order flux Jacobian ex-

7

trapolation is used on the LHS even in schemes of higher order of accuracy,

order of accuracy will not significantly change the results of the parallel algo-

rithm analysis of the first order derivations given here.

Linearization

Equation (2.2) can't be used to construct a linear system of equations

because the flux vectors.ffq), g(q), and h(q) are non-linear functions of q. One

approach to overcoming this problem is to approximate the flux vectors with

functions that are linear combinations of the unknown variable q"+ 1. This

process, known as flux vector linearization, is accomplished by tmmcating the

Taylor series for the function about time level n at the second term. This pro-

cess yields the linearized flux vectors

[Of(q)_n. n+l

f(q)n+l = f(q)n + _.____} (t1 _ qn),

[Ogfq)_",_,+ 1

g(q)n+l = g(q)n + __.._1 _q _ qn), (2.3)

[Oh(q)'_". ,+ l
h(q) n+l = h(q) n + _--_) t_ _ qn).

The derivative terms in equation (2.3) are called the flux Jacobians.

The flux Jaeobians are 5 by 5 matrices represented by the n_Amlng convention

[Of(q)'_ n [Og(q)'_ n (Oho(__._:))n

Substituting the linearized flux vectors of(2.3) into the discretized equation of

(2.2) yields the equation

Aq n 6x(f(q)n + A(Aqn)) + 6y(g(q)n + B(Aq")) 6z(h(q) n + C(Aqn)) 0 (2.4)
A"---]-+ Ax Ay 4- Az = "

8

Collecting coefficients of the unknown terms to the LHS gives the equation

(At At) _Atf6_e(q)n 6yg(q)" 6zh(q)n_I + -_xxdxA .+ _ydyB.+-_zdzC • Aq n = _ _x + -_y + /lz]" (2.5)

Although equation (2.5) represents the general formulation of the dis-

cretized equations used in the Euler solver, it is not complete. Before continu-

ing, observe the dots following the flux Jacobians on the LHS. The dots imply

that the finite volume difference operator is applied after the distribution of

Aq. The key ambiguity that remains in equation (2.5) arises from the fact that

the finite volume difference operator is extracting information from cell faces,

while the solution vector is in terms of the dependent variables def'med to be

located at cell centers. This implies that one needs to choose a method to ex-

trapolate information from cell centers (where it is assumed known) to cell

faces (where it is assumed unknown). An obvious extrapolation method would

be an averaging process of neighboring A q values. Unfortunately, it is known

that this approach leads to schemes that tend to blur (or smear) shocks. On

the other hand, an upwind extrapolation scheme derived from the mathemati-

cal character of the physics (which dictates that information is propagated in

preferred directions) yields a solver that resolves shocks more sharply. How-

ever, before this approach can be taken the flux vectors must be reformulated

in order that spatial difference operators can be defined to allow information

to propagate in these preferred directions.

Flux Vector Splitting

The Euler equation's flux functions are homogeneous of degree one.

Steger and Warming[3] exploited this observation to redefine the flux function

9

in terms of the flux Jacobian. For example, the x--direction flux, f(q), canbe

written as

f(q) ffi Aq. (2.6)

Where A is the flux Jacobian matrix computed as before,

A = Of(q)
aq (2.7)

As shown in numerous references (see references [4] and [5]) the flux

function can be split based on the signs of the eigenvalues of the flux Jacobian

matrix A. Using the Steger-Warming[3] approach, flux Jacobians can be split

and applied to equation (2.6) arriving at the equation

f(q) = A(+)q + A(-)q = f+(q) + f-(q), (2.8)

where the eigenvalues of A (+) are non-negative and those of A (-) are non-posi-

tive.

Equation (2.8) can then be linearized in the same way as equation (2.3)

and substituted in the discretized of equation (2.2) to arrive at

(AtSxA+ At - At_i_.R+ At - AtJzc+ At6zc-)l + _xx "+ "_'-_6 a.4 "+ -_y - r-" "+ _-_yf yB " + -_z " + _z " /l qn =

_ At(6xf+(q)n 6xf-(q) n 6yg+(q) n 6yg-(q)" 6zh+(q),, 6zh-(q)n_

"_x + -_x + Ay + _ + _ + Zz]" (2.9)

Note the notational difference in the flux Jacobian terms of (2.8) and (2.9) in-

dicated by

A (+) = TA(+)T-I _ A + - Of+(q)
dq ' (2.10)

where the matrices T, A (+), and T-1 are presented elsewhere[4].

Remember the purpose of splitting the flux functions was to accommo-

date an upwinding extrapolation scheme based honoring the proper direction

10

of information propagation. The reason why Steger-Warming flux splitting

helps accomplish this can be seen by drawing an analogy between the quasi-

linear and characteristic variable formulations of the Euler equations. The

eigenvalues of the characteristic equation can be seen as wave speeds where

the signs of the eigenvalues represent the direction of wave propagation. It

can be shown by analogy to the quasi-linear form of the Euler equations that

the eigenvalues of the conservative flux Jacobians are identical to the eigenva-

lues of the characteristic equation, thus the signs of the eigenvalues represent

the direction of information propagation. Given this analysis, we can

construct a first order extrapolation by which the flux vector q information is

"moved" from cell centers to cell faces in the characteristic directions dictated

by the signs of the corresponding eigenvalues. For example, using this extrap-

olation technique, a first-order finite volume discretization operator on the

LHS can be written as

5_A +Aq) = (A +zlq),_, - (A +zlq)x_ax_, , (2.11)

5x(A-Aq) = (A-Aq)x+axj_ -- (A-Aq)x_.,. (2.12)

A scheme that uses Steger-Warming flux splitting theory has now been

derived. For completeness, it should be pointed out that the Euler solver de-

veloped by Janus[l] utilizes a more advanced splitting scheme on the RHS

known as flux difference splitting. The specific scheme used is the approxi-

mate Riemann solver originally developed by Roe[6] and implemented by Ja-

nus[l]. Unfortunately, linearizing the fluxes that result from the Roe scheme

has proved difficult primarily because the Jacobians associated with Roe

fluxes' are nearly impossible to determine analytically. As a compromise to

computing the Roe flux Jacobians numerically, the present application uses

11

Steger-Warming flux vector splitting theory on the LHS, and Roe flux differ-

ence splitting theory on the RHS (The rational for this compromise is pres-

ented in reference [7]).

Approximate Factorization

Examination of the LHS of equation (2.9) yields the observation that

there is a linear combination of seven unknowns: the Aq associated with a giv-

en cell plus those associated with its six neighboring cells. Tkking advantage

of the topologically orthonormal grid structure implied by the six point stencil

and assuming explicit treatment of the boundary conditions, an ordering of

the equations for the cells can be found such that the resulting A matrix (of the

system Ax=b) defined by the LHS will be block septidiagonal, and thus is ex-

pensive to solve. A less computationally expensive method is derived by ap-

plying an approximate facterization to the LHS of equation (2.9) yielding the

equation

l+A--xx6xA "+_yy-:-"+_z _--_6.rA .+_-_SyB .+_z z • qn=

_dt:6,f+(q)n 5_f-(q)n 5yg+(q)n 5yg-(q)n 6zh+(q)n 6zh-(q)n_

_, Ax + _ + _ + -_ + _ + 7zz /. (2.13)

Because of the structure of each factor in the LHS of equation (2.13), this fac-

torization can be viewed as an approximate LU decomposition of the matrix

defined by the LHS of equation (2.9).

A two step procedure to solve this system can be implemented as follows

(At 6_A+ At,_.n+ At :i c'+) RHS (2.14)I + -_xx . + _-__ y.. . + -_ ., ,_. • A q* = ,

At6_ A At - At)I + _-_x - " + _yy6yB . + -_zz6zC - . Aq" = Aq *,

where A q* represents an intermediate product of the factsrization.

12

The approximate facterization scheme introduces error terms in the

LHS of the numerical derivation. In the steady state case it is assumed that

these errors will be driven out as time-steps advance because the A q terms

are driven to zero. Similar arguments are made for the unsteady case when

Newton iterations are applied. It has also been shown by way of numerical

experimentation that this two step scheme appears to be stable for large CFL

values[8][9].

Newton Iterations

The discretized form of the Euler equations that appears in equation

(2.13) can be used to find a steady state solution to the Euler equations by ad-

vancing the equations in time until the Aq n solution values approach zero,

thus giving a steady state solution. At this point, the terms that appear on the

LHS have no effect on the solution (or the error). However, this is not the case

when unsteady solutions are of interest. One approach to constructing a LHS

implicit operator that does not effect the RHS in a way that is compatible with

the derivations thus far can be illustrated by noting that the linearization pro-

cedure indicated in equations (2.3) is strikingly similar to that of a Newton

method iteration.

The vector form of the Newton method can be written as (refer to [10])

L,(qp- l)(qp _ qp-l) = _ L(qP- 1) . (2.16)

13

For the present case, the function L(q) given by equation (2.2) is used for

the RHS of equation (2.16), or

t(6a_(q)n+l 6rg(q) n+l 6zh(q)n+l_

L(qn+,) = qn+l _ qn + A [k _ + Ay + _]" (2.17)

Using equation (2.17) in equation (2.16) and applying an approximate faetor-

ization yields the diseretized equation given by

(�it + /lte$..R+ At6('+)(At At - At)Al +_xx6xA "+-_yy-y-- "+-- • I+ -.+ __zOzC- qn+l,o/iz z- X;x6 A 6rB •+ • =

q, _ qn+ 1,o _/it(Rn+ l,o) ,

where

/iq,+l,o = qn+l,o+1 _ qn+l,o, and

R"+l,o = 6J+(q) "+I'° 6_f-(q),+l¢_ 6yg+(q)"+l_o
/Ix + �Ix + +

/Iy

6yg -(q)n+ 1.p 6zh +(q)n+ l,o 6zh -(q)n+ 1.p
/Iy + + (2.18)Az /iz

Equation (2.18) describes a two step solution procedure much like equa-

tions (2.14) and (2.15) that is implemented as follows

(/It + At + At a c'+) q, qn+l,o_ /It(R,+14,) .(2.19)I + -_x6xA • + -_---_yOyB. + -_z..Z._ • /iq* = _

(At-At_At)I + 7xx6#4 • + -_y6yB • + -Zzz6_C- • Aqn+_,o =/Iq*. (2.20)

Equations (2.19) and (2.20) represent the final form of the Euler solver

used herein. Before the Newton iterations can begin, an initial condition must

be established. If the last time-step values (time level n) are chosen as initial

conditions for the first Newton iteration (time level n+l), then the first step of

the Newton iteration is identical to equation (2.13) and thus assumed to repre-

sent a reasonable initial condition.

14
The Form of the Resulting Linear System

As suggested earlier, the form of the linear system that is implied by the

implicit operators on the LHS plays a significant role in the analysis of the

parallel algorithm. The form of the linear system is dictated by the implicit

equation for each computational cell and by the ordering of variables in the

solution vector. If the Aq n+ I_ variables of equation (2.18) are ordered in the

solution vector as Fortran orders array entries in physical memory, the result-

hag linear system is captured by a set of banded matrices as shown in

Figure 2.1. In this figure, the dark central diagonal line represents the place-

ment of the sum of the identity matrix and flux Jacobian matrices of equation

(2.18) and the gray lines represent the placement of the remaining flux Jaco-

bian matrices.

qn + 1 -- RHS

J
Figure 2.1 A Form of the Linear System Implied by Equation (2.18)

The two step method that results from the approximate factorization

method given in equations (2.19) and (2.20) describe a process that involves a

forward and backward substitution. The forward substitution that occurs

during the solution of equation (2.19) is illustrated in Figure 2.2. In this ini-

tial step of the approximate factorization solution, the solution vector is corn-

15

puted from top to bottom by algebraic substitution. The second step of the

approximate factorization solution involves a backward substitution that pro-

ceeds from the bottom to the top of the solution vector. These substitution

steps, as they have been described, are sequential processes and as such domi-

nate execution time when this algorithm is implemented on parallel computer

systems.

Aq* _ RHS

Figure 2.2 A Form of the Linear System Implied by Equation (2.19)

The Parallel Approximate Factorization Algorithm

When implementing the approximate factorization algorithm described

by equations (2.19) and (2.20) the substitution procedures become the critical

obstacle to obtaining high parallel performance. The reason the substitution

procedures are essentially sequential operations can be found by examining

the form of the linear system in Figure 2.2. Note that one band of the banded

matrix is placed in close proximity (actually it is immediately adjacent) to the

main diagonal. The adjacency of the first band forces a strict dependency (a

recursive relationship in vector processing terms) in the description of each

substitution step. It is possible, however, to move the bands away from the

16

main diagonal by ordering the equations in the linear system based on diago-

nal planes as presented in [1] and [11]. The form of the linear system when

diagonal plane ordering is chosen for the solution vector of equation (2.19) is

illustrated in Figure 2.3. The dark gray boomerang shaped region indicates

the region of placement for the flux Jacobians and the light gray stair-step

line indicates how the substitution procedure can be divided into a sequence of

parallel operations. In this stair-step, each step represents a step in the sub-

stitution process where all of the equations covered by the rise of the next step

can be solved simultaneously.

Figure 2.3 The Form of the Linear System Implied by Equation (2.19)
Given a Diagonal Plane Based Ordering of the Solution Vector

Observations regarding the impact of diagonal plane ordering on the

substitution procedure led to the development of an algorithm for the Cray

vector architecture that demonstrated significant performance gains over the

previous sequential substitution procedures[ll]. Since the diagonal plane or-

dering allows many equation substitutions to occur simultaneously, this algo-

rithm may also provide performance gains on general parallel architectures.

17

The Modified Algorithm

For reasons that will be described in Chapter HI, the parallel approxi-

mate factorization algorithm is not appropriate for massively parallel comput-

er systems. In light of this fact, an alternative approach to obtaining greater

parallel performance in the substitution passes of the approximate factoriza-

tion algorithm must be considered. One possible approach is to partition the

solution vector and "decouple" the partitions so that substitutions can occur in

each partition simultaneously. The partitions of the solution vector are de-

coupled by zeroing out entries in the linear system such that each partition

can begin substitution processes independently. The decoupling process is il-

lustrated when two partitions are considered for equation (2.14) in Figure 2.4.

In this figure, the entries that fall in the shaded region are replaced with zeros

in order to decouple the lower partition from the upper partition. A similar

procedure would be applied to the backward substitution step described by

equation (2.15). Although this decoupling introduces errors in the solution

process, it is assumed that the Newton iterations will be able to reduce these

errors in much the same way as these iterations reduce the error introduced

by approximate factorization. In addition, Belk[12] demonstrated that conver-

gence can be obtained when this method is used and that the location of

shocks will be correct even when they cross partition boundaries.

This approach, identified as the modified algorithm, can provide addi-

tional parallelism, but at the cost of additional Newton iterations. For the

three and four partition cases that Belk studied, the number of time-steps re-

quired to achieve a steady state solution was increased by 25%[12]. A 25%

penalty seems a reasonable price to pay considering that a four partition case

18

potentially could extract a four fold increase in performance on a parallel pro-

cessor. A more comprehensive study of the cost effectiveness of this method

will be a subject of invest'_,mtion in this thesis.

Figure 2.4

J
An Illustration of Decoupling Solution Vector Partitions

Implem¢nt_tion of the Modified Algorithm

It would seem that locating and zeroing the entries in the linear system

for the modified algorithm might be a complex process. In the actual imple-

mentation the entries in the linear system are not actually zeroed, instead the

coefficients (represented by the Aq values in the solution vector) of the flux

Jacobians are zeroed as necessary when the substitution passes proceed. This

process is accomplished by way of domain decomposition. In the domain de-

composition approach, the grid is subdivided into a number of domains (or

blocks) and these domains define the partition of the solution vector. When

the forward or backward substitution occurs in each domain, zero A q values

are injected into the substitution procedure at domain boundaries resulting in

an algorithm that is simple to implement.

CHAPTER III

ANALYSIS OF THE PARALLEL _RITHM

The objective of a parallel algorithm analysis is to make a value judge-

ment based on the appropriateness of an algorithm for implementation on par-

allel computer systems. An essential component of this value judgement, and

resulting categorization, is performance measurement captured by a set of de-

fined performance metrics. The most common performance metric, the rate of

operations performed per second, is valuable for assessing an algorithm's cost

effectiveness for a given problem on a given hardware platform, but it pos-

sesses virtually no predictive capability on how an algorithm will perform in

any other instance than the one that was measured. For sequential machines,

predictive performance metrics are derived from memory access patterns, ra-

tios of integer to floating point operations, and other measurements that can

be used to model how subunits of a sequential architecture will be utilized.

For parallel architectures the definition of new predictive performance met-

rics are evolving. This chapter will discuss several predictive performance

metrics and adapt them to demonstrate that the parallel approximate factor-

ization algorithm described in Chapter II is a poor algorithm for massively

parallel implementation. The suitability of the modified algorithm will also be

discussed.

19

2O

: Amdahrs Law .. .

Amdahl's Law[13], a frequently referenced criterion for analysis of par-

allel algorithms, is also the source of the popular parallel performance metric,

speedup. Speedup is defined as the ratio of the time required to execute an

algorithm on one processor to the time required to execute the algorithm on N

processors. Amdahl argued that if s percent of an algorithm's execution time

was inherently sequential, and p percent of an algorithm's execution time was

completely parallelizable, then the algorithm could at most execute in 1/s of

the time required by a sequential processor. This argument is easily demon-

strated given the time required to execute the sequential program will simply

be the total s + p = 100%, and the time required to execute on N parallel pro-

cessors will be s + piN. Given this, the computation of the performance met-

ric speedup is easily expressed as

speedup = sequential execution time s + p 1- -- = (3.1)
parallel execution time s + piN s + p/N"

The maximum speedup can be determined by taking the limit of equa-

tion (3.1) as the number of processors approaches infinity given by

maximum speedup = N _ _o "s +

This argument illuminates the severe limitations that parallel proces-

sing places on its applications since an algorithm that spends only ten percent

of its work in sequential execution can at most gain a ten fold improvement in

speed.

21

An important variation of the speedup metric is parallel efficiency tie-

fined by the average utilization of the parallel processing elements. This met-

ric is defined by

parallel efficiency = speedup
U (3.3)

One potential drawback of the speedup and parallel efficiency metrics is

that they tend to measure architectural constraints as well as algorithmic

ones. Often an application with good speedups no longer achieves them when

the application is optimized. This case occurs when the sequential fraction of

the application is dominated by message exchange times that are not reduced

when the parallel work is reduced by optimization. Because of this phenome-

na, the fastest algorithm implementations often give the poorest speedup

measurements[14][15]. For this reason speedup and parallel efficiency can be

valuable metrics for measuring the efficiency of an application on a given

hardware platform but they are not useful for the purpose of categorizing par-

aUel algorithms.

A Definition of Parallel Alaorithmr,

In an informal definition, an algorithm might be defined as a recipe or a

description of a set of processes required to achieve a defined goal. In this in-

formal setting, a parallel algorithm might be defined as a recipe that describes

concurrent processes. Likewise, a formal definition ofparaUel algorithms may

be described by first expanding the definition of a sequential algorithm de-

fined by an ordered set of operations given by

= ,o,}. (3.4)

Now define a partially ordered algorithm as an ordered set of sets given by

=

1 = [Ol,O2,''',Oj], 2 = {Oj+l, Oj+2,''',Okl,'*"

such that any algorithm constructed from an arbitrary ordering of the opera-

tors contained in sets _b 1 through _ra produce an algorithm that is equivalent

to Jr. Two algorithms are equivalent if and only if applying all operations in

each algorithm produces the same results in every case. A partially ordered

algorithm is a parallel algorithm if each set ¢1 through q_m exhibits the prop-

erty of operation independence. The set of operations _bi has the property of

operation independence if and only if no two operations contained within _i

read or write to the same data space written to by the other.

The character of the parallelism defined by a parallel algorithm can be

captured in a parallelism profile defined for the parallel algorithm _P as the set

of ordered pairs given by

(3.6)

The degree of parallelism, PC,, is defined by the number of elements in the set

¢/. The operation execution time, TO,,, is defined as the maximum execution

time required to complete any operation in the set ¢i •

Scaled Speedup and Fixed-Time Size-Up

Traditionally, the set of applications considered as viable for computa-

tional solution grows as the power of computational engines grow. Likewise,

the size of the problems considered for computational solution typically grows.

This property can be attributed to two factors: 1) problem sizes considered on

earlier computational engines tend to be less interesting because most have

23

been solved, and 2) modeling of key physical phenomena becomes a limiting

factor in many design processes giving rise to a demand for more complex and

larger scale computational modeling capability. Gustafson[16] argues that

Amdahl's Law should be reevaluated in light of larger parallel machines since

the sequential fraction of an algorithm is typically a function of the size of the

problem considered. Gustafson further argues that a scaled speedup metric

(that is a measurement of speedup as both problem size and number of proces-

sors are increased) is a more appropriate measurement for parallel applica-

tions. A significant criticism of scaled speedup is that problem sizes should be

driven by application requirements, not measurement requirements. (What

value is there in knowing a problem of a large size can be solved efficiently

when the need for the solution of a problem that size hasn't been clearly dem-

onstrated?)

Further work of Sun and Gustafson[17] argues for the use of a fixed-

time size--up metric as a measure of performance. In fixed-time size--up, the

size of the problem that executes in a predetermined amount of time is re-

corded as the number of processors increase. It is argued that the fixed-time

size-up metric is "fairer" than speedup because results are much less affected

by optimization of the parallel work A further assertion is made that fixed-

time size-up is machine independent which implies that it could be a good

metric for measuring an algorithm's performance independent of the hard-

ware platform.

_calability of the Parallel Approximate Factorization Algorithm

Since significant speedups were achieved using a Cray vector processor

for the implementation of the forward and backward substitution phases of

24

the approximate factorization algorithm[ll], it is natural.to ask if the parallel-

ism used to gain vector processing speedups could be used in a multicomputer

setting. This question has been addressed by Welch[18] where he developed a

fine grained decomposition of the problem for multicomputers. Through the

use of a communications coprocessor that was capable of scheduling tasks effi-

ciently, granularity could be adjusted by appropriately mapping computation-

al cells to processors[19]. A variety of mappings of cells to processors was con-

sidered. No speedups were achieved with this approach primarily due to

small problem size and high message latencies. Whether larger problem sizes

could exploit multicomputer parallelism remained an open question of this

work.

The question of using larger problem sizes to utilize multicomputer par-

allelism was addressed in [20] where it was shown that the problem size re-

quired to utilize an increasing number of processors grows superlinearly. This

suggests that if a large multicomputer is considered for implementation of the

parallel approximate factorization algorithm, a significantly large problem

size would be required to effectively use these processors.

In an attempt to further understand the nature of this algorithm, a

measurement of the size-up metric will be made on an idealized parallel pro-

cessor with the unique property of having zero message passing cost. The idea

behind this measurement is that it will provide an upper bound on the ex-

pected performance of this algorithm. The execution time required by an

idealized parallel processor with zero message passing cost can be modeled

given the parallelism profile of a given parallel algorithm. Given this profile,

25

the time required to compute a parallel algorithm _P on an idealized multicom-

purer consisting of Nprocessors is given by

m r_ _

execution t/me = _]P_--_-___I (3.7)
i=1 INI

The parallelism profile for the parallel approximate factorization algo-

rithm can be defined in three stages of operations: 1) construction of the linear

system, 2) performing the forward substitutions, and 3) performing the back-

ward substitutions. These operations are performed on a three dimensional

computational space composed of computational cells organized into a three

dimensional array of dimensions rn, n, and p. The first operation (construct-

ing the linear system) is comprised of computing the right hand side of the

equations and computing the flux Jacobians. These operations can be per-

formed in any order and thus become the first step in the parallel algorithm.

Since 60 percent of the work of this algorithm is spent performing this opera-

tion, and the work is distributed evenly between cells, the time required to

execute this operation can be expressed as 0.6 normalized time units per cell.

To describe the ordering required to correctly perform the forward sub-

stitution consider that each cell in the computation space can be identified via

three indices: i, j, and k where 1 _< i _< rn, 1 _< j ___n, and 1 _< k _< p. At first

the cell identified by i + j + k = 3 (given by 1+1+1 = 3) is the only computa-

tional cell that can contribute to the forward sweep. Next, three cells defined

by i + j + k = 4 (2+1+1 = 1+2+1 = 1+1+2 = 4) can be operated on concurrently.

This process continues until only one cell, defined by i + j + k = rn + n + p,

can contribute to the computation. The backward substitution is identical ex-

cept the order of these steps is reversed.

26

The description of the ordering required for the forward and backward

substitution phases can be used to develop a parallel algorithm for the sub-

stitution process. The parallelism profile of this parallel algorithm for a 10 by

10 by 10 problem size is given in Figure 3.1. Since 40 percent of the work re-

quired by the complete algorithm is required to perform the forward and back-

ward sweeps, a normalized time of 0.2 per computational eel] is required to

perform a forward or backward sweep operation.

Degree of
Parallelism

8O

70

6O

50

40

30

20

10

0
0 5 10 15 20 25

Accumulated TLme

Figure 3.1 Degree of Parallelism for a 10xl0xl0 Problem Size

With the description of the parallel algorithm complete, the execution

time on the idealized multicomputer can be realized using equation (3.7). The

program listed in Appendix A was used to compute equation (3.7) and itera-

tively find the fixed-time size-up curve. Before computation of the size-up

curve can begin, a time must be chosen. For a first pass the time required to

execute a 10 by 10 by 10 problem size on a single processor was considered.

The size-up curve for this case is given in Figure 3.2. The problem size was

27

normalized to the 10 by 10 by 10 problem size and the dotted line represents

an optimal size-up curve.

4000

350C

300(}

Normaliz_ 2500
Problem
Size 2000

1500

1000

5O0

0
0

/I"

/ i

Equa_on (3.7) ___
jl f

Optimal jJ_

/i_ fl

1ti tif

. /tf

500 1000 1500 2000 2500 3000 3500 4000

Number of Processors

Figure 3.2 Size-Up Based on 10xl0xl0 Sequential Execution Time

The results shown in Figure 3.2 look very promising, but remember

that these results are derived from an idealized model multicomputer. In

practice the amount of parallelism that could actually be exploited would be

much less because cell level granularity would be too fine to efficiently exploit

on any current multicomputer system. One way to increase the granularity of

the parallel algorithm would be to cluster cells and solve each cluster as if it

were a sequential operation. A clustering of cells into cubes of size 3 by 3 by 3

would increase the granularity of the algorithm at the cost of reducing the

available parallelism. Because the structure of the parallelism would essen-

tially be the same, we can model the clustered algorithm with a smaller prob-

lem size. The 10 by 10 by 10 clustered solution can approximately be modeled

by choosing the time for the fixed-time size-up curve to be the execution time

28

on a single processor of a 3 by 3 by 3 problem. The results of this experiment

are shown in Figure 3.3.

4oo_ /-_
350_ /

/

ooI

0 500 1000 1500 2000 2500 3000 3500 4000

Number of Proc_sors

Figure 3.3 Size-Up Based on 3x3x3 Sequential Execution Time

The results shown in Figure 3.3 are less promising, but what is more

profoundly disturbing is the wide variance in results of the size-up measure-

ment in the two previous cases. It seems that the size-up curve can look

arbitrarily good depending on the choice of the fixed-time constraint. A

possible explanation of these variances is that by starting with the larger

fixed-time constraint, the unused parallelism of the sequential case is "bor-

rowed" during the initial stages of size-up. If this is the case, a better size-up

measurement could be taken by first "boding off' the sequential case parallel-

ism by performing a fixed problem size scale-up as suggested by Amdahrs

Law and then use the scaled execution time to do a fixed-time scale--up. The

procedure for this approach would work as follows: 1) select an arbitrary

problem size, 2) do a fixed-size scale-up until parallel efficiency is at 65

29

percent, and 3) use the execution time from fixed--size scale-u p to do a fixed-

time size--up. The rationale for choosing a parallel efficiency of 65 percent will

be given later. When this approach is used the curve shown in Figure 3.4

results.

Figure 3.4 is based on the application of the previous procedure for an

initial problem size of 10 by 10 by 10. The same basic curve resulted from

applying the same procedure to problem sizes ranging from 3 by 3 by 3 to 20 by

20 by 20 suggesting that this method is a much more reliable measurement

than simple size-up where the fixed-time constraint is left unspecified.

Normalized
Problem
Size

6

5

3

2

1
0

/S __ ua=on<37,

............Optimal
I I _1 I I I I I I I [I [I I I

500 1000 1500 2000 2500 3000 3500 4000

Number of Processors

Figure 3.4 Size-Up After 65% Parallel Efficiency Scale-Up

Obviously the curve shown in Figure 3.4 is not promising if nearly 4000

additional processors are required to solve a problem only six times larger in

the same amount of time. It is still hard to feel comfortable with these results

since the first size-up curve did show a near optimal size-up curve. It seems

very large problems could be solved with this algorithm on massively parallel

3O

processors. The confusion that results from examining the size-up metric can

be linked to the fact that the size-up metric makes no attempt to measure cost

effectiveness, much less optimize it.

Sterling and Laprade[21] used a cost effectiveness metric in the analy-

sis of a simple parallel model given by

Cost Effectiveness =
Performance

Resource Cost"
(3.8)

In this simple measure of cost effectiveness, performance is defined by the

amount of work performed per amount of time and resource cost denotes the

cost of computational resources. For parallel processors, the resource cost can

be based on node-hours defined as the product of execution time and the num-

ber of processor used. Given this measure of resource cost, equation (3.8) can

be written in more explicit terms as

Work

t _ Work (3.9)
Cost Effectiveness - Nt Nt 2

In equation (3.9), Work is defined as the number of operations required to

solve the problem on a sequential architecture; and the variable t is defined as

the time required to obtain a solution on the parallel processor.

Sterling and Laprade[21] showed that for their simple parallel model,

cost effectiveness was maximized when parallel efficiency was at 50 percent.

In order to determine the point of optimal cost effectiveness for the parallel

approximate factorization algorithm, the cost effectiveness and efficiency were

measured during a fixed-size scale-up of a 10 by 10 by 10 problem. Figure 3.5

represents the cost effectiveness versus efficiency curve resulting from this

measurement demonstrating that optimal cost effectiveness occurs at 65%

parallel efficiency.

0.035

0.030

0.026

Cost 0.020
Effectiveness

0.015

0.010

0.005

O i

0

! ! I t I I I 1 ! I | ! I I | I ! I

10 20 30 40 50 60 70 80 90 100

Efficiency

Figure 3.5 Cost Effectiveness Curve for a 10xl0xl0 Problem Size

31

0.050

Cost
Effectiveness

0.005
1 10 100

Normalized Problem Size

Figure 3.6 Optimal Cost Effectiveness Versus Problem Size

Perhaps a more interesting measurement of a parallel algorithm than

the size-up measurement is the measure of the optimal cost effectiveness as

the problem size scales. Figure 3.6 illustrates this measurement for the paral-

lel approximate factorization algorithm. This figure demonstrates that if it is

not cost effective to solve a small problem using the parallel approximate fac-

32

torization algorithm, it will not be cost effective to solve larger problems. Con-

sidering this and the results of Welch[18], the parallel approximate factoriza-

tion algorithm is considered to be of limited value as an algorithm for

massively parallel computer systems.

Analysis of the Modified Algorithm

The forward and backward substitution passes are the key sources of

scalability problems in the parallel approximate factorization algorithm.

Upon examination, the transfer of A q values from one computational cell to

another is the key data dependency driving the ordering of the substitution

passes. A possible way to improve the parallel structure of the approximate

factorization algorithm would be to develop approximations for A q that are

free of dependencies. Belk[12] demonstrated that a computational space can

be partitioned into blocks, and that a correct solution can be obtained with

A q = 0 values transferred at block boundaries. With this relaxed criterion for

the exchange of Aq values, all blocks can execute concurrently within a solu-

tion iteration. The analysis of this parallel algorithm follows two courses: 1)

analysis of the parallel structure of the algorithm, and 2) analysis of the nu-

merical costs introduced by relaxing Aq exchanges.

The analysis of the parallel structure of the modified algorithm as,

sumes that a computational problem space will be partitioned into blocks, and

zero Aq boundary exchanges will be performed such that computation of each

block can proceed independently within an iteration. Since the substitution

phases that exist within blocks are implemented as sequential algorithms in

the parallelized turbo-machinery application, the parallelism that results

from the substitution phases within the blocks are not considered.

33

Given this model, a simulation of this algorithm's execution on the

idealized multicomputer can be developed. The efficiency curve for this algo-

rithm varies widely as the number of processors are scaled mainly due to the

stair-step speedup that occurs as the number parallel elements become divis-

ible by the number of processors. This behavior makes it impossible to plot

the cost effectiveness versus efficiency curve used earlier to determine the

point of optimal cost effectiveness. However, the point of optimal cost effec-

tiveness can easily be read from a plot of the cost effectiveness metric versus

the number of processors in the idealized multicomputer. The plot of the cost

effectiveness and efficiency is given in Figure 3.7 for a problem case consisting

of 27 blocks. In this case the point of optimal cost effectiveness is found when

the number of processors is equal to 27. The efficiency for this case is 100 per-

cent.

0.6

0.4

0.2

0
0

i; i ".

_! \ ! _ciency

I i i I I | ! I i | I | i | I | i | I

10 20 30 40 50 60 70 80 90 100

Number of Processors

Figure 3.7 Cost Effectiveness and Efficiency as Processors Scale

Figure 3.7 shows that for at least one case, optimal cost effectiveness

occurs when the index of parallelism is equal to the number of processors.

34

When Np is the index of parallelism, W8 is the sequential work required by a

single domain, t8 is the time required to execute a single domain, and N = Np,

the cost effectiveness equation becomes processor and problem size indepen-

dent. The equation for cost effectiveness for the case where N- Np is given by

Cost Effectiveness - Work Ws Np Ws
- - (3.10)

Nt 2 N (tsNp/N) 2 ts 2 "

Equation (3.10) demonstrates that if the problem is sealed up such that do-

mains of equal size are added at the same rate as processors are added, the

cost effectiveness will remain constant, and thus the parallel structure of this

algorithm is scalable.

The analysis of the parallel structure of the modified algorithm did not

consider the communication structure required to implement the algorithm.

The communications structure that results from partitioning the domain is

largely a mesh topology and is expected to map in a scalable way to architec-

tures that implement mesh topology communication networks.

Measuring Numerical Costs in the Modified Algorithm

The modified algorithm contributes error terms to the left hand side of

numerical formulation given in Chapter II. The assumption is that the New-

ton iterations used to converge to a final solution (at a given time-step) will

also diminish the effect of error contributions from the modified algorithm.

The performance of the modified algorithm can become degraded because

additional Newton iterations may be required to reach convergence. Because

the precise number of extra iterations that will be required to reach conver-

gence can not be predicted, numerical experimentation is required to estimate

these effects.

35

Because the cost effectiveness formulation is based on the work re-

quired by the sequential algorithm and the time required for solution on a par-

allel system, the cost effectiveness measurement can be used to evaluate the

results of numerical experiments. Numerical experiments will proceed along

similar lines as the previous analysis. First an optimal cost effectiveness

should be determined by increasing the level of partitioning in a fixed-size

problem. If the problem size can then be scaled up without reduction in maxi-

mum cost effectiveness, this algorithm will be considered scalable.

On the Cost Effectiveness Metric

Traditionally, measurements of parallel algorithm implementations

have been limited to execution times, floating point performance, and speed-

up. The problem with these measurements is that they do not fit into any co-

herent theory by which algorithms can be classified. The cost effectiveness

analysis presented in this chapter begins to solve this problem by introducing

a classification that can be reliably measured, that is scalability. The basis of

this analysis is the determination of the optimal cost effectiveness curve for

increasing problem sizes. If measurements are not taken at the optimal cost

effectiveness they are useless since the potential of the algorithm was not

measured. This is the key problem with the fixed-time size-up measurement

when the fixed-time is not set at the point of optimal cost effectiveness. That

is, a fixed-time size-up measurement could be made entirely in a cost ineffec-

tive domain causing misleading results as was the case in Figure 3.2.

The power of the optimal cost effectiveness curve's ability to classify

parallel algorithms can be demonstrated with the following example. First

consider an optimal sequential algorithm that does not parallelize. Since this

36

is a sequential algorithm, theexecution time will be proportional to the work.

Given this, the cost effectiveness as a function of problem size can be corn-

puted as

Cost Effectiveness = Work Wseq 1

Nt2 (k Wseq) 2 k2Wseq (3.11)

where k is the constant of proportionality that relates Work to execution time.

Equation (3.11) demonstrates that the cost effectiveness of a sequential ap-

plication declines as a reciprocal of problem size.

Also considered in this example is a parallel algorithm that is not scal-

able such as the parallel approximate factorization algorithm. This algorithm

is able to achieve a high cost effectiveness for small problem sizes but is un-

able to maintain this cost effectiveness as the problem size is increased. For

the purposes of illustration, assume that this algorithm's cost effectiveness de-

dines linearly.

Finally, consider a scalable parallel algorithm that maintains a

constant cost effectiveness as the problem size is increased provided that

enough processors are available. Now a plot of the optimal cost effectiveness

of each algorithm can be used to determine the optimal algorithm based on

problem size. For small problem sizes, the algorithm that is not scalable

achieves a higher cost effectiveness than any of the other algorithms. Because

the scalable algorithm can maintain its cost effectiveness as the problem size

is increased, it will eventually become the most cost effective as is demon-

strated in Figure 3.8.

Cost

Effectiveness

__ Scalable Parallel Algorithm

Parallel Algorithm

Sequential Algorithm

Problem Size
J

Figure 3.8 Maximum Cost Effectiveness versus Problem Size

37

One essential criterion required by a scalable algorithm if it is to main-

tain a constant cost effectiveness is the availability of processor resources. In

practice, no parallel computing system has an infinite number of processors so

at some point any scalable algorithm will reach a problem size beyond which

no additional performance gains can be made. At this point the cost effective-

ness should begin to decline as a reciprocal of the problem size for the same

reasons that the sequential algorithm exhibited this behavior. Making this

observation, it is possible to see how cost effectiveness can be used to deter-

mine which algorithm will be optimal under conditions of limited processor re-

sources. For example, consider two scalable algorithms: algorithm A and algo-

rithm B. Algorithm A is able to attain a higher cost effectiveness when

processors are available because it can effectively utilize more processors on a

given problem size than algorithm B. The implication of this relationship is

that algorithm A will reach the limit of available processors at a smaller prob-

38
lem size than algorithm B. When this occurs algorithm A's cost effectiveness

will begin to decline while the cost effectiveness of algorithm B will continue to

remain constant which gives algorithm B the opportunity to become the most

cost effective for larger problem sizes as illustrated in Figure 3.9.

/

Cost

Effectiveness

Scalable Algorithm A

Scalable Algorithm B _ _ '_.

! !

Problem Size

Figure 3.9 Maximum Cost Effectiveness as Processor Limits are Reached

The previous example can be used to describe why the parallel approxi-

mate factorisation algorithm is appropriate for the Cray and not for massively

parallel computer architectures. In the case of the Cray, a relatively small

number of vector processing elements act concurrently with low data transfer

costs. In this environment, the parallel approximate factorization algorithm

gains the maximum advantage since low data transfer costs allow for a fine

grained implementation. On the other hand, the modified algorithm will nev-

er be able to obtain enough concurrent computing resources to become cost ef-

fective since the Cray implements a relatively small vector size. In a massive-

39

ly parallel computer architecture the tables are turned since coarser grained

computations are required to overcome communication costs and there is an

abundance of concurrent computing resources. In this case, the parallel

approximate factorization algorithm is never able to attain a cost effective

solution because of granularity limits. In contrast, the modified algorithm

takes advantage of coarse granularity and abundant parallelism to obtain cost

effective solutions for large problem sizes.

The examples presented here demonstrate the power of the cost effec-

tiveness analysis in determining the desirability of different parallel algo-

rithms. It seems that this metric is highly relevant to parallel algorithm anal-

ysis and is a powerful tool to understanding the complex behaviors that

parallel algorithms can exhibit.

CHAPTER IV

IMPLEMENTATION

The process of parallelizing a computer program developed for a partic-

ular application involves developing an evolving strategy for implementing

the application on a parallel architecture. This process begins with an analy-

sis of the algorithm used in the application. This analysis has resulted in the

selection of the modified algorithm described in Chapter II as a potentially

cost effective approach. The strategy for parallelization is further refined dur-

ing study of the application's sequential implementation because decisions

made when an algorithm is implemented on a sequential architecture can im-

plicitly assume sequential execution. The final step in the process involves

making compromises between reducing the degree of modification required of

the sequential application and obtaining high utilization of a given parallel

architecture.

The final result of the parallelization strategy is a set of incremental

modifications applied to the sequential program such that the expression of

parallel execution is accomplished by way of architectural and system sol%-

ware semantics. The turbomachinery application developed by Janus[l] was

chosen for parallelization because it solved a class of problems that tax the

computational capacity of traditional sequential architectures, and because its

multi-block capability could be used to implement the modified algorithm de-

scribed earlier.

4O

41

Object_Oriented Fortran

Object-Oriented Fortran[22] was selected as the progrommirlg lan-

guage for the parallel implementation of the turbomachinery application. Ob-

ject-Oriented Fortran provides an interface loosely based on object-oriented

design principles with an emphasis on execution and synchronization of multi-

ple object instances on parallel computing platforms. Object-Oriented For-

tran is a portable parallel programming language that can allow programs to

port without change to a wide range of parallel architectures including net-

works of workstations. This feature alone allowed for the use of workstation

style debuggers and allowed idle workstation cycles to be used during the de-

velopment stages of the parallel application. In addition to these features, Ob-

ject--Oriented Fortran provides a level of abstraction that makes dealing with

mapping problems to processors and packaging messages less tedious than

portable message passing libraries.

Preparation of the Application

The sequential turbomachinery application was modified in several

stages in order to prepare it for the final parallel implementation. The first

issue that was dealt with was the treatment of common block storage in the

original application because common block storage was used as a mechanism

for passing data between subroutines. This presented a problem in the paral-

lel implementation on distributed memory architectures since the subtle coor-

dination of a global data space as a means of communicationbetween subrou-

tines needed to be redefined in terms of the explicit message passing and

synchronization semantics of the distributed memory model. In an effort to

get a handle on where common block storage was used to communicate be-

42

tween what would be separate distributed memory modules, the common

block mechanism was incrementally replaced with subroutine arguments as a

way of passing data between subroutines. Although this approach tended to

make the argument lists for subroutines large, it also made the data depen-

dencies between subroutine calls much more obvious.

During the conversion from common block storage to subroutine argu-

ments as a means of passing information between subroutines two points be-

came apparent: 1) the sequential implementation of communication between

blocks depended strongly on sequential execution for proper synchronization,

and 2) "hardwired" parameters in the boundary condition and residual cal-

culation subroutines would make testing a wide variety of domain decomposi-

tion strategies difficult. In light of these two fmdings, the next step in prepar-

ing the sequential application for parallel execution was to strip out all of the

multi-block support and develop a general single block code that would have

no "hardwired" parameters in its implementation of the boundary condition

and residual calculation routines. This application could then be advanced to

a parallel multi-block code by re-implementing the inter-block boundary

management with distributed memory semantics. The development of the

general single block code required many months of effort dominated by the

process of removing common block storage as a means of passing data between

subroutines.

Development of the Parallel Application

The development of the parallel application involved adding parallel

constructs to the single block code that would enable multiple blocks to

execute in parallel by way of the modified algorithm. A block is represented

43

by a three dimensional region of the simulation space constructed from: a

structured grid that is a rectangular prism in computational space. The faces

of the rectangular prism for a given block are divided into rectangular surface

patches. These patches were used in the single block implementation of the

solver to impose boundary conditions such as impermeable surfaces, inflow, or

outflow. In the parallel case these boundary conditions were extended to in-

clude a connective boundary condition. The connective boundary condition is

described by the address of another patch which becomes a repository of q

variable information. The patch address consists of a unique block identifier

and a patch identifier that is unique within a block. In addition to the transfer

of q values through the use of the connective boundary condition, rotation op-

erations could be applied to the momentum vector component of the q vector

when required to impose symmetry about the x axis. When the connective

boundary condition was added to the single block code, the application was ca-

pable of parallel solution of multi-block problems that did not involve relative

motion between blocks. For turbomachinery problems an additional commu-

nication semantic was required, namely the communications peculiar to the

interface between domains that did involve relative motion between blocks

represented by blocks rotating at different angular velocities.

In the sequential application, transfer of information between bound-

aries shared by blocks in relative motion was handled with a communication

management structure called a ring buffer. The ring buffer was a global buff-

er where information would be inserted from one block and subsequently read

by another block. A moving cursor (pointer) to the ring buffer was used to

handle the changing communication patterns caused by the rotating interface.

44

This approach was impractical to implement in the parallel application since

it was based on the assumption that the two blocks accessing the interface

would share a common ring buffer resource. In a parallel implementation, a

global ring buffer would cause a bottle-neck in the communication since this

global buffer would need to be managed by a single processor. To circumvent

this problem, blocks need to directly communicate to the appropriate block on

the other side of the ring buffer interface instead of going through a global

buffer "middle man". The semantic capturing this direct communication

across the ring buffer interface has been named a ring buffer connection. In

the ring buffer connection, a patch is given the angular velocity of the blocks it

is connecting to and a circular list of addresses to patches that will be commu-

nicated with as the rotation of the interface progresses. With this information,

a patch involved in a ring buffer communication can partition its information

(as a function of time-step and angular velocities) and pass this information

directly to the appropriate partners on the other side of the ring buffer inter-

face. A schematic of this connection for a single patch is given in Figure 4.1.

In order to handle symmetric solutions, a rotation operator is included with

each patch address. The ring buffer connection is managed by dividing the

given patch into sub--patches that will match the patch divisions on the other

side of the ring buffer connection and then sending these sub-patches to the

appropriate blocks. When a block receives this partial patch it also receives

an offset which it uses to store the information in the appropriate locations in

the computational space. In addition to q variable information, the ring buffer

connection also communicates information that is used to compute a new grid

45

for a region between the rotating interfaces. This communication uses the

same basic procedures involved in the comm_n_cation of the q variables.

Figure 4.1 A Schematic of a Ring Buffer Connection for One Patch

The implementation of the ring buffer connection required complex pro-

cedures in order to calculate sub-patches from moving patch interfaces. Sub-

routines handling these connections were implemented in C and tested sepa-

rately from the application so that high confidence in the implementation of

this communication procedure could be achieved. The C language was chosen

for this task over Fortran because of its advanced capabilities regarding dy-

namic memory management and complex data structures. The final parallel

application was validated as correctly implementing the parallel communica-

tion semantics by performing an exact comparison of the results generated by

the parallel implementation to those of the sequential implementation.

The result of the block oriented communication semantics implemented

in the parallel turbomachinery application was an input file that is complex

and filled with a large degree of redundant information. The complexity of

46
this file made creating a corresponding input file for the parallel application a

tedious process. This problem is addressed through the development of an au-

tomated domain decomposer that generates both a partitioned grid and input

file for the parallel application.

The Automated DomAin Decomposition Too|

The domain decomposition tool is responsible for partitioning the grid

into sub-grids that will be used for parallel computation. Since the work re-

quired by a sub-domain is proportional to the number of cells in the domain,

load balancing is achieved by making the number of cells in each sub-grid

approximately equal. A key challenge of the domain decomposition tool was

the development of an expression for boundary condition and connectivity in-

formation described by the original grid in such a way that this information

could easily propagate to the decomposed grid. This information is captured

in a file format that is based on a block structured language such as the C lan-

guage. The input parser for this input file format was developed using the

standard lex and yacc programming tools.

The input file defines its data by variable assignment and variable

scoping. Variables in the input file can have four basic types: integer num-

bers, real numbers, character strings, and existential. The firstthree are well

known types and need littledescription, whereas the existential variable type

is a variable that is defined by itsexistence in the input file.This variable can

be considered as a boolean type and isused to turn on various features of the

decomposition tool.

The firstvariable scope of the input fileis the global scope. This vari-

able scope is used to define general parameters of the simulation and grid.

47

Table 4.1 contains a partial list of the general parameters used by the domain

decomposition tool.

Table 4.1 Variables Accessible from the Global Variable Scope

Variable Name

temporal_accuracy

spatial_accuracy

limiter

!Type

S'rFJNG

beta

flux_j acobian_update_frequency

INTEGER

STI_ING

number_of_cycles INTEGER

REAL

INTEGER

number_of_refinement_iterations IN_rEGER

number_of_cyclesbetweenclicks INTEGER

grld_symmetry INTEGER

free_stream_mach_number REAL

Variable Values

_rst-order _

"three-poinb--b __._ward"

1-3

"minmod"

"superbee"
"van-leer"

1-2

1 - MAXINT

1 - MAXINT
1 - MAXINT

0.0 - 2.0

The READ_GRID command is used to read in the initial grid file for the

simulation. This command is similar in format to a function call in the C lan-

guage and is given two arguments: a file name, and the number of grid blocks

in the file. The grid blocks that are read from the grid file are numbered as

they occur in the file starting with one. The grid block numbering is used to

identify the grid block when the boundary conditions and connectivity in-

formation is given.

The next variable scope used in the input file is the variable scope of the

grid block. This variable scope is created by the BLOCK command. The

BLOCK command has a syntax similar to a structure declaration in the Clan-

48

guage in that it uses braces to delimit the context of the scope it creates. The

arguments to the BLOCK command are the grid identifier created by the

READGRID command and a name that will be assigned to the grid block for

use in developing connections between grid blocks. The only variable current-

ly used in the scope of the block command is the divideblock variable. The

divideblock variable is used to tell the decomposer how many equally sized

partitions in which to divide a grid block for parallel solution.

Within the scope of the BLOCK command several commands are avail-

able for describing boundary conditions associated with the grid. The first of

these commands is the PATCH command. The PATCH command is used to

create rectangular regions on the exterior surface of the computational space

(representing surfaces of _, 11,or g = constant) represented by the geometry for

the assignment of boundary and connectivity information. The PATCH com-

mand divides the exterior surfaces of the computational space into three

classes of patches denoted by IJ_FACE, JK_FACE, and KI_FACE. Each

PATCH command creates a pair of patches: one for the lowest index of the grid

and one for the highest index of the grid. For example: when the grid points in

a grid block are numbered by three indices such that i=[1,ni], j=[1,n.]],

k=[1,nk], a patch command that defines a pair of patches on the IJ_FACE de-

fines patches for the exterior surfaces at k=l and k=nk. The PATCH command

assigns a name to the pair of patches it creates. The individual patches of the

pair are denoted by following the name of the patch pair by a plus or a minus

sign. The plus (minus) sign denotes that the patch on the high (low) index

value of the grid will be used.

49
The TERMINAL command is also available within the scope of the

BLOCK command. The TERMINAL command is used to assign lists of

patches to terminal identifiers. Terminals represent end-points of commu-

nication and will be used to express boundary conditions and connections.

The argument of the TERMINAL command is the name of the terminal that it

creates. The TERMINAL command is followed by a list of patches enclosed in

braces. When two terminals are connected to one another, the patches listed

by the TERMINAL command will be connected in the order they appear.

The final command that is available to the scope of the BLOCK com-

mand is the TERMINAL_ATTRIBUTES command. This command is used to

assign boundary conditions to terminals. The TERMINALATTRIBUTES

command creates a new variable scope for the terminal name that is given to

the TERMINALATTRIBUTES command. Two variables are recognized in

the terminal variable scope by the domain decomposition application and they

are listed in Table 4.2.

Table 4.2 Variables within the Scope of TERMINAL_ATTRIBUTES

varmble Name

boundary_type

Type

STRING

EXISTENTIALzero_area

VariAble Values

"impermeable"
_Ilfl0w"

"inflow-outflow"
"OU_'r'_OW"

None

The final variable scope created for the domain decomposition applica-

tion is the variable scope created by the ZONE command. A zone is a collec-

tion of grid blocks which share the same angular velocity. Because all grid

5O

blocks share the same angular velocity within a zone, the.connections between

grid blocks within a zone are static. The only variable that the domain decom-

position tool uses in the variable scope created by the ZONE command is the

normalized angular velocity of the zone represented by the variable dtdt. In

addition to the variable dtdt, there are several commands available within the

scope of the ZONE command.

The first command

GRAB_BLOCK command.

zone.

within the scope of the ZONE command is the

This command is used to assign a grid block to a

The CONNECT command is used to create static connections between

terminals defined in blocks assigned to the zone. The CONNECT command

identifies two terminals that will communicate information during the simu-

lation. A terminal is identified by the name of the grid block and the name of

the terminal separated by a period. If the CONNECT command is followed by

the keyword SYMMETRIC then momentum vectors communicated across this

connection will be rotated in order to satisfy the geometric symmetry of the

problem.

The final command available within the scope of the ZONE command is

the RINQBUFFER command. Ring buffers are used to communicate in-

formation between zones since relative motion will be present in these connec-

tions. The RING_BUFFER command defines the computational dimension

along which grid line shearing will occur as the zones rotate, the depth into

the zone in which regridding will occur, and a list of terminals that will partic-

ipate in the ring buffer interaction.

51

Finally, CONNECT commands in the global context are used to connect

zones by connecting ring buffers defined in each zone. The syntax of this

CONNECT command is the same as the CONNECT command of the zone ex-

cept that no symmetric attribute may be applied and the arguments to the

connect command are ring buffer identifiers rather than terminal identifiers.

An example input file for the unducted counter rotating prop fan prob-

lem studied in Chapter V is given in Appendix B.

CHAPTER V

RESULTS

The objective of this chapter is to present the results of numerical ex-

periments aimed at answering two key questions: 1) is the parallelized algo-

rithm a cost effectiveapproach (compared to sequential solution) even though

it requires extra computational effortbrought on by additional Newton itera-

tions, and 2) is the cost of additional Newton iterations controlled as larger

problem sizes are considered.

Computing the Level of Convergenc_

The value of the Aq vectors computed during the solution process is a

measure of how well the solution satisfies the discretized equations, where the

form of the discretized equations depends upon the formulation. For example,

when Newton iterations are not used the value of zlq represents how well the

spatial numerical derivatives of the discretized equations are satisfied. This

provides a good measure of the level of convergence for a steady state flow field

since the temporal derivatives are zero in a steady state solution. On the oth-

er hand, the value of the Aq vectors computed during the Newton iteration

process provide a measure of how well both the spatial and temporal numeri-

cal derivatives are satisfied, thus providing a measure of convergence for un-

steady flow fields. Either set of these/lq vectors provide a local measurement

of convergence for the discretized equations and can also provide a global mea-

surement if an averaging process is applied to them. The averaging process

52

53

applied to compute a global convergence level in this chapter is a root--mean-

square average. This average favors a majority reduction in the magnitude of

the zlq vectors. The value computed using this average is called the root,--

mean--square sum of the residual terms, or more simply the RMS residuals.

For the parallel application, the RMS residuals are computed independently

for the density, momentum, and energy terms of the Aq vector providing three

independent measures of global convergence.

_The Solution Process

In the sequential application, a typical simulation involves a two step

process. The first step involves an impulsive start where the geometry of the

simulation is thrust into a steady flow field of constant free stream Mach num-

ber. The simulation progresses through a complete turbomachine revolution

in order to arrive at a solution that is relatively free of the transient conditions

created from an impulsive start. Newton iterations are not used during the

first revolution since high resolution answers of the transients caused by the

impulsive start are not considered interesting. This first revolution can be

considered as a means of approximating an initial condition for the simula-

tion. After the first revolution, two additional revolutions axe simulated using

Newton iterations. The number of Newton iterations used during this stage

of the simulation is the number required to reduce the RMS residuals by two

orders of magnitude. The parallel application will employ the same procedure

to obtain a solution.

54

Solution Results from the Parallel Application

The numerical experiments presented in this section were performed on

a GE UDF8--8 counter-rotating unducted fan immersed in a Mach 0.7 flow

field. Two cases are considered for this geometry: a zero angle of attack con-

figuration and a configuration at ten degrees angle of attack. The zero degree

angle of attack configuration can take advantage of symmetry to reduce the

number of grid cells required by a factor of eight. These two configurations

allow for the measurement of the scalability of the algorithm. As presented in

chapter III, the zero angle of attack problem will be executed on larger num-

bers of processors until cost effectiveness is maximized. Then the problem will

be scaled up by a factor of eight when the ten degree angle of attack case is

considered. The cost effectiveness of the scaled-up case will be measured and

if it remains relatively constant the algorithm will have demonstrated an abil-

ity to scale to larger configurations and remain cost effective thus demonstrat-

ing scalability.

An Intel iPSC/860 parallel computer comprised of 32 hypercube con-

nected i860 processors with 8 megabytes of RAM on each processor was used

to measure the parallel application for the zero angle of attack configuration.

The number of processors applied to the zero angle of attack configuration was

varied from 4 to 12 processors and the execution times required to complete

three complete revolutions of the geometry was measured. At 6 processors

enough memory was available on each node to allow flux Jacobian freezing to

take place (flux Jacobian freezing means that the flux Jacobians are not re-

computed after the second Newton iteration, but instead are stored and re-

used). The savings in computations that flux Jacobian freezing produces is

55

significant. Table 5.1 lists the execution times achieved as the number of pro-

cessors applied to the problem increases.

The cost effectiveness for each case considered in Table 5.1 is computed

by applying the equation

Cost Effectiveness = Problem Size

N (texecut/on)2" (5.1)

This expression of cost effectiveness is equivalent to equation (3.9) when Work

is defined in terms of problem size. Observation of the cost effectiveness for

the Intel iPSC/860 simulations shown in Table 5.1 demonstrates that optimal

cost effectiveness is achieved when the problem is decomposed for 10 proces-

sors.

When the angle of attack configuration is considered, the problem size

grows by a factor of eight. If the maximum cost effectiveness occurs at 10 pro-

cessors, it is expected that a maximum cost effectiveness for the angle of at-

tack case will require 80 processors. Since only 32 processors are available on

the Intel iPSC/860 parallel computer used for this experiment, another paral-

lel computer was used for the cost effectiveness measurement of the angle of

attack configuration. The Intel Delta parallel computer at the California

Institute of 2L_chnology was used for this simulation. The Intel Delta parallel

computer is comprised of roughly 512 mesh connected i860 processors with 16

megabytes of RAM per processor. The zero angle of attack configuration

execution time on the Intel Delta for a 10 processor decomposition was mea-

sured as a reference point. The Intel Delta provided a modest improvement in

execution time (over that of the iPSC/860) that can be attributed to differences

in compiler and communication network performances.

56

The 80 processor simulation of the angle of attack configuration re-

quired a slightly longer execution time than the 10 processor simulation of the

zero angle of attack case. This caused a slight drop in the cost effectiveness for

the larger problem size. Since no additional Newton iterations were required

by the angle of attack case, the increase in execution time can be attributed to

communication costs. Since no attempts were made to optimize communica-

tion costs by appropriately mapping the problem decomposition to processors,

it is expected that the execution time of the larger problem size will be reduced

when the placement of blocks on processors is optimized.

Table 5.1 Execution Time Results of the Parallel Application

l_rocessors

4 ipsc

6 ipsc

6 ipsc

8 ipsc

10 ipsc
12 ipsc

10 delta

80 delta

Newton

Iterations

6

6

6

7

7

8

7

7

Jacobian

freezing

freezing

freezing

freezing

freezing

freezing

Execution

Time

5.56 hrs

Problem Size

23520 cells

3.83 hrs 23520 cells

2.96 hrs 23520 cells

2.54 hrs

2.17 hrs

2.06 hrs

2.09 hrs

2.18 hrs

23520 cells

23520 cells

23520 cells

23520 ce]ls

188160 cells

Cost

Effectiveness

188.17

361.66

447.41

455.7O

499.48

461.87

538.45

494.91

Convergence Results of the Parallel Applicatio,_

Since the modified algorithm introduces additional errors into the solu-

tion algorithm, it is important to compare the effects these errors have on con-

vergence to the fully coupled sequential algorithm. For these comparisons the

RMS residuals that result from the sequential application using five Newton

57

iterations in the final two revolutions is considered. Figure 5.1 shows the

RMS residuals for the density component of the zlq vector for the sequential

algorithm and the parallel algorithm for both angle of attack cases during the

first prop revolution. The 10 block case is at zero angle of attack and the 80

block case is at 10 degrees angle of attack. The RMS residuals for the energy

component are shown in Figure 5.2. It is apparent from these plots that the

parallel algorithm was less capable of converging the energy equation than

the density equation. Since the energy component of the z_q vector is larger on

average than any other term, the conclusion can be drawn that the error

created by forcing Aq to zero at the block boundary will inject the greatest er-

ror in the energy equation. This problem may be lessened by normalizing the

equations in a way that balances the magnitudes of the components of the LIq

vector.

The RMS residuals for the final Newton iteration during the last two

prop revolutions are given in Figure 5.3 and Figure 5.4. These results show

that the parallel algorithm performed better than the sequential at converg-

ing the density equations, but was less capable of converging the energy equa-

tion. The effects of differences in convergence rates of the different residual

terms requires further study.

In order to verify that the parallel application converges to the correct

solution, the pressure coefficients along the base and tip of the blades in the

prop fan were considered. For comparison, the results at the 480 th time-step

of the 10 processor parallel solution were compared to the results of the se-

quential application. The results of these comparisons are shown in Figures

58
5.5 through 5.8. These comparisons demonstrate that the parallel application

results are essentially equivalent to the sequential results.

-0.2

<

©

-0.4

-0.6

-0.8

\k- _ 80 Block Decoupled

20 40 60 80 100 120 140 160

TIM]_ STI_P

59

Figure 5.1 Density Residuals During the First Revolution

J
-0.3

G0

-0.7

u_
(I) -1.1
<

©
- -1.5

x •

\. •

\,
• Sequential'\,

K,_.?, - 10 Block Decoupled

' ",",, 80 Block Decoupled

.__.7 __.................... _.:._ ..:?.__'"

0 20 40 60 80 100 120 140 160

"l-"-I l%_E S'-I_p

Figure 5.2 Energy Residuals During the First Revolution

-1.7

-1.8

-1.9

v_

_-1 -2.1 I

_ -9..3

Sequential

...... 10 Block Decoupled

"'7_'-----_"-"".. 80 Block Decoupled

I I I I I I I

160 200 240 280 320 360 400 440 480

TIME STEP

6O

Figure 5.3 Density Residuals at the Final Newton Iteration

v-_

<

-1.7

-1.8

-1.9

-2.0

-2.1

-2.2

-2.3

Sequential

10 Block Decoupled

80 Block Decoupled

160 200 240 280 320 360 400

TIME S_-_P

Figure 5.4 Energy Residuals at the Final Newton Iteration

440 480

1.0
61

%

0.7

0.4

0.1

-0.2

-0.5

-0.8

-1.1
0

Sequential

----- Parallel

0.2 0.4 0.6 0.8 1.0

_c

Figure 5.5 Pressure Coefficient Comparison at the Base of the Fore Blade

1.2

%

0.9

0.6

0.3

0.0

-0.3

-0.6

-0.9

-1.2

---.-......__.

Sequential

Parallel

0 0.2 0.4 0.6 0.8 1.0

We

Figure 5.6 Pressure Coefficient Comparison at the Tip of the Fore Blade

%

1.0

0.7

0.4

0.1

-0.2

-0.5

-0.8

-1.1

-1.4

_ ----- Sequential

0 0.2 0.4 0.6 0.8 1 .(

rgc

Figure 5.7 Pressure Coefficient Comparison at the Base of the Aft Blade

62

%

1.0

0.7

0.4

0.1

-0.2

-0.5

-0.8

-1.1

-1.4

Sequential

Parallel

0 0.2 0.4 0.6 0.8 1.0

We

Figure 5.8 Pressure Coefficient Comparison at the Tip of the At_ Blade

CHAPTER VI

CONCLUSIONS

Two parallel algorithms, the parallel approximate facterization algo-

rithm and the modified algorithm, have been considered as candidates for

massively parallel multicomputer systems. Arguments have been made that

the parallel approximate factorization algorithm is a poor choice for massively

parallel multicomputer systems based on cost effectiveness. Numerical ex-

periments have demonstrated that the modified algorithm is a cost effective

means of gaining high performance on massively parallel multicomputer sys-

tems.

Observations of the constraints placed on parallel algorithm develop-

ment can also be made based on cost effectiveness analysis and experiences

related to the development of the parallel turbomachinery application. Since

optimal sequential algorithms are based on minimizing instructions and opti-

mal parallel algorithms are based on a balance between rnlnlmiT.ing instruc-

tions and maximizing parallel utilization it is reasonable to assert that the op-

timal parallel algorithm is not identical to the optimal sequential algorithm.

This observation was also made by Chan [23] where he argued that the set of

efficient kernels presumed when scientific applications are developed must

change when parallel implementations are considered. The Cost effectiveness

analysis also suggests that the optimal general algorithm will be polymorphic

in that it will change form based on problem size and the number of processors

available. This suggests that the structural complexity of optimal parallel al-

63

64
gorithms will be greater than optimal sequential algorithms. The structural

complexity of the parallel algorithm may also be increased due to limitations

that the parallel architectttre places on parallel algorithms as demonstrated in

the implementation of ring buffer communications for the parallel turboma-

chinery application. If parallel algorithms are necessarily structurally more

complex, the choice of Fortran as a base language for parallel algorithms must

be called into question. Clearly, object-oriented paradigms designed to imple-

ment algorithms of high structural complexity must be considered more ap-

propriate for parallel algorithm development in the future.

Before the modified algorithm can be considered as an appropriate par-

allel algorithm several additional issues must be investigated. The robustness

of the modified algorithm for extremely complex geometries needs to be dem-

onstrated. Investigation into the potential for violation of conservation law

principles in the modified algorithm is suggested. Alternate iterative methods

such as successive over relaxation (SOR), preconditioned iterative methods,

and convergence accelerators such as multigrid methods should be compared

to the modified algorithm in a cost effectiveness study. In addition, scalability

of the modified algorithm for grids of finer resolution should be studied fur-

ther. Adaptive methods where the either the grid or the domain decomposi-

tion is adapted in order to reduce iterations required by the modified algo-

rithm is also suggested.

APPENDIXA

PARALLEL EMULATOR PROGRAM

65

#include <stdio. h>

#include <math. h>

66

*

Emulation program for LU decomposition based CFDalgorithm.

Emulates execution on a zero message latency parallel machine with

variable number of processors. This emulator only estimates

relative execution times based on the parallelism profile of the

algorithm.

*/

int parallelism profile[100000] ;

/*

compute_parallelism_profile fills the array parallelism_profile with

the parallelism profile of the forward and backward substitution passes

of the LU decomposition solver. The parallelism profile is determined

from the fact that all cells that lie on the plane {i+j+k = constant}

can be executed concurrently. This function returns the number of

steps contained in the parallelism profile. The arguments to this

function are the size of the computational space in i, j, and k

dimensions.

*/

int compute_parallelism_profile (ni, nj, nk)

int ni,nj,nk ;

{

int i, j, k,profile_size ;

profile_size = ni+nj+nk-2 ;

bzero(parallelism_profile, profile_size*

sizeof(*parallelism_profile)) ;

for (i=0; i<ni; i++)

for(j=0; j<nj; j++)

for (k=0; k<nk; k++)

parallelism_profile [i+j+k] ++ ;

return profile_size ;

67

*

compute_time computes the execution time for a problem with dimensions

ni, nj,nk when executed on N processors. It computes the total time

including the time required to set up the LU decomposition problem.

The amount of time required to setup the LU decomposition is determined

from the measurement of 60% of execution time spent on this operation

during sequential execution. 20% is spent on the forward pass, and

20% is spent on the backward pass making a total execution time of 1

for a problem size of 1 cell.

*/

double compute_time (ni, nj, nk, N)

int ni, nj,nk, N ;

{

double total time = 0.0 ;

int profile_size, i ;

double SETUP TIME PER CELL = 0.6 ;

double SUBSTITUTION TIME PER CELL = 0.2 ;

total_time += SETUP_TIME_PER_CELL*ceiI(((double) ((ni)*(nj)*(nk)))/

((double)N)) ;

profile_size = compute_parallelism_profile(ni, nj,nk) ;

for(i=0;i<profile_size;i++)

total time += 2*SUBSTITUTION TIME PER CELL*

ceil(((double)parallelism_profile[i])/((double)N)) ;

return total time ;

68

*

We are now going to use our compute_time emulator to determine the

sizeup metric for this parallel algorithm. This is accomplished by

first computing the time to execute the program with 1 processor

on a given problem size. Then we will compute the time required to

solve a larger problem on N processors. If we solve the problem in

less time we will increase the size of the problem and try again.

When we have found the size of the problem that can execute in the

same amount of time, we will increment N and repeat the process.

*/

main ()

{

int n[3],I=0, J=l,K=2 ;

double sequential time, parallel time ;

int N = l,sequential_size, i ;

/* The n array contains the size of the sequential reference process */

n[I] = 3 ;

n [J] = 3 ;

n [K] = 3 ;

/* sequential_size is used to normalize sizeup numbers */

sequential_size = n[I]*n[J]*n[K] ;

sequential_time = compute_time(n[I],n[J],n[K],N) ;

printf("sequential time = %f\n",sequential_time) ;

for(N=2, i=0;N<=4000;N=N+N/25+I) {

do {

parallel_time = compute_time(n[I],n[J],n[K],N) ;

if(parallel_time < sequential_time) {

n[i]++ ;

i = (i+i)%3 ;

}

} while(parallel_time < sequential_time) ;

printf("%d %f\n",N,

((float) n [I]*n [J] *n [K]) / (float) sequential_size) ;

}

exit (0) ;

APPENDIX B

EXAMPLE INPUT FILE FOR THE DOMAIN DECOMPOSITION TOOL

69

simulation_name = "Counter-Rotating Prop Fan" ;

7O

// temporal accuracy can be:

// first-order

// three-point-backward

// trapezoidal-time-differencing (Not recommended)

temporal_accuracy = "three-point-backward" ;

spatial_accuracy = 3 ;

// limiters:

// minmod (use with second and third order)

// superbee (use only with second order)

// van-leer

limiter = "van-leer" ;

number of cycles = 480 ;

beta = 0.0 ;

// If 1 the flux jacobians will be computed each newton iteration

// if not 1 flux jacobians will not be computed after 2nd newton

// iteration, this saves time but uses extra memory

flux_jacobian_update_frequency = 2 ;

residual_print_frequency = 1 ;

number of refinement iterations = 7 ;

initial_cycles of zero_pressure_gradient_BCs = 20 ;

initial_cycles of first_order_calculations = 0 ;

initial_cycles of entropy_violation_dissipation = 9999 ;

free stream mach number = 0.7 ;

number of cycles_between_clicks = 1 ;

grid_symmetry = 8 ;

READ_GRID("grid_2-block",2) ;

BLOCK(l,front_blades) {
divide block = 5 ;
PATCH(xl,IJ__FACE,i, 42, i, 22) ;
PATCH(x2, IJ_FACE,42,52, i, ii)
PATCH(x3, IJ_FACE,42,52, ii, 22)
PATCH(x4, IJ_FACE,52,57, i, 22)
PATCH(p2,JK_FACE,I, 22, I, ii) ;
PATCH(p3,KI_FACE,I, ii, i, 8) ;
PATCH(p4,KI_FACE,I, ii, 8,57) ;

TERMINAL(hub){p4-} ;
TERMINAL(blades){x2-,x2+} ;
TERMINAL(sting) {p3-} ;
TERMINAL(exterior) {p3+,p4+} ;
TERMINAL(front) {p2-} ;

TERMINAL(rear) {p2+} ;

TERMINAL(kplus) {xl+,x3+,x4+}

TERMINAL (kminus) {xl-, x3-, x4-}

TERMINAL ATTRIBUTES(hub) {

boundary_t_e = "impe_eable" ;

};

TERMINAL ATTRIBUTES(blades) {

boundary_t_e ="impe_eable";

};

TERMINAL-ATTRIBUTES(sting) {

zero area ;

};

TERMINAL AT_IBUTES(exterior) {

boundary_t_e = "inflow-outflow"

};

TERMINAL_ATTRIBUTES(front) {

boundary_t_e ="inflow";

);

71

BLOCK (2, rear_blades) {

divide block = 5 ;
m

PATCH(pl, IJ_FACE, I, i0, 1,22) ;

PATCH (p2, IJ_FACE, i0, 20, i, Ii)

PATCH (p3, IJ_FACE, 10, 20, II, 22)

PATCH (p4, IJ_FACE, 20, 57, I, 22)

PATCH (p5, JK_FACE, I, 22, I, ii) ;

PATCH (p6,KI_FACE, i, ii, i, 57) ;

} ;

TERMINAL(hub) {p6-} ;

TERMINAL (exterior) {p6+} ;

TERMINAL(front) {p5-} ;

TERMINAL(rear) (p5+} ;

TERMINAL(kplus) {pl+,p3+,p4+} ;

TERMINAL(kminus) {pl-,p3-,p4-} ;

TERMINAL(blades) {p2+,p2-} ;

TERMINAL ATTRIBUTES (hub) {

boundary_type-- "impermeable" ;

} ;

TERMINAL ATTRIBUTES (blades) {

boundary_type = "impermeable" ;

} ;

TERMINAL ATTRIBUTES (exterior) {

boundary_type = "inflow-outflow"

} ;

TERMINAL ATTRIBUTES (rear) {

boundary_type = "outflow" ;

) ;

72

ZONE(front) {

dtdt = -1.620 ;

GRAB_BLOCK(front_blades) ;

} ;

CONNECT(front_blades.kplus, front_blades.kminus):SYMMETRIC ;

RING_BUFFER(ring_buffer, JK_FACE, KDIM, 05) {front_blades.rear}

ZONE(rear) {

dtdt = 1.620 ;

GRAB_BLOCK (rear_blades) ;

} ;

CONNECT (rear blades, kplus, rear blades, kminus) :SYMMETRIC ;

RING_BUFFER (ring_buffer, JK_FACE, KDIM, 09) {rear_blades, front }

CONNECT (front. ring_buffer, rear. ring_buffer) ;

73

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Janus, J.M., Advanced 3--D CFD Aloorithm For Tarbomachinery PhD.
Dissertation, Mississippi State Univ_sity, May 1989.

Beam, R.M. and Warming, R. F., "An Implicit Factored Scheme for the

Compressible Navier-Stokes Equations," AIAA Journal, Vol. 16, No. 4,
pp. 393--402, April 1978.

Steger, J.L. and Warming, R.F., "Flux Vector Splitting of the Inviscid
Gasdynamic Equations with Applications to Finite Difference Methods,"
Journal of Computational Physics, Vol. 40 (1981), pp. 263-293.

Janus, J.M., The Development of a Three-Dimensional Split Flux Vector
Euler Solver with D_v___mic Grid Application% M.S. Thesis, Mississippi
State University, August 1984.

Whiffield, D.L. and Janus, J.M., "Three-Dimensional Unsteady Euler
Equations Solution Using Flux Vector Splitting," AIAA Paper No.
84-1552, June 1984.

Roe, P.L., "Approximate Riemann Solvers, Parameter Vectors, and Dif-
ference Schemes," Journal of Computational Physics, Vol. 43 (1981), pp.
257--372.

Whitfield, D.L., Janus, JAM., and Simpson, L.B., "Implicit Finite Volume

High Resolution Wave-Split Scheme for Solving the Unsteady Three--Di-
mensional Euler and Navier-Stekes Equations on Stationary or Dynam-
ic Grids," Mississippi State Engineering and Industrial Research Station
Report No. MSSU-EIRS-ASE-88-2, Febuary 1988.

Anderson, W.K., Thomas, J.L., and Whitfield, D.L., "Multigrid Accelera-
tion of the Flux Split Euler Equations," AIAA Paper 86-0274.

Anderson, W.K., Implicit Multimid Al_orithmR For The Three-Dimen-
sional Flux Split Euler Equation_, Ph.D. Dissertation, Mississippi State
University, August 1986.

Whiffield, D.L., "Newton-Relaxation Schemes for Nonlinear Hyperbolic
Systems," Mississippi State Engineering and Industrial Research Sta-
tion Report No. MSSU-EIRS-ASE-90-3, October 1990.

74

75

[11]

[12]

Janus, J.M., and Whitfield, D.L., "Advanced 3-D Viscous SSME Turbine

Rotor Stator CFD Algorithms," NASA CR-178997, September 1986.

Belk, D.M., Three-Dimensional Euler Equations Solutions on Dvn.amlc

Blocked Grids, Ph.D. Dissertation, Mississippi State University, August
1986.

[13] Amdahl, G., _Validity of the single-processor approach to achieving large

scale computing capabilities," Proceedin_ of AFIPS Conference (1967),
pp. 483-485.

[141

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Hockney, R.W., "Characterizing computers and optimizing the FACR(1)

poisson-solver on parallel unicomputers," IEEE Transactions on Com-
puters, c.32 (10) (1983), pp. 933-941.

Barton, M. and G. Withers, "Computing performance as a function of the

speed, quantity, and cost of the processors," Proceedings of Supercomput-
ing '89 (1989), pp. 759-764.

Gustafson, J., "Reevaluating Amdahl's law," Communication_ of the
ACM, Volume 31 (May 1988), pp. 432-533.

Sun, X. and Gustafson, J., "Toward a better parallel performance metric,"
Parallel Computing, Volume 17 (1991,) pp. 1093-1109.

Welch, W., "Message--Driven Solver for Euler Fluid Dynamics Equa-
tions," Proceedings of the ACM 26th Annual Southeast Regional Confer-
ence (April 1988), pp. 29-34.

Welch, W., "Zero Overhead Message Passing on the MADEM," Proceed-

in_s of the ACM 26th Annual Southeast Regional Conference (April
1988), pp. 45-50.

Luke, E.A., "Memory Constraints on Scaling Multicomputers," Proceed-

in gs of the ACM 27th Annual Southeast Regional Conference (April
1989), pp. 567-570.

Sterling, T.L. and Laprade, I_C., "The Impact of Overhead on the Scal-

ability of Multiprocessors for Parallel Processing," Proceedings of the

ACM 26th Annual Southeast Regional Conference (April 1988), pp.
138-145.

[22]

[23]

Reese, D. and Luke, E.A, "Object-Oriented Fortran for Development of

Portable Parallel Programs," Proceedings of the Third IEEE Symposi.um

on Parallel and Distributed Processing, (December 1991), pp. 608-615.

Chart, T.F., "Hierarchical Algorithms and Architectures for Parallel

Scientific Computing," Computer Architecture News, Volume 18, Num-
ber 3 (September 1990), pp. 318-329.

